Methodologies:
Extreme Programming
and Scrum

Software Engineering I
Lecture 19

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Ouvutline of the Lecture

« Examples of Methodologies
 Extreme Programming
e Scrum

 Royce’s Methodology (slide set L20 posted on SE
portal)

« Combines the unified process with hierarchical
project management.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP

 Extreme Programming is an example of an agile
software methodology

* Higher priority on adaptability (“empirical process control
model”) than on predictability (“defined process control model”)

e Change, in particular in the requirements, is normal during
software development

» Software developer must be able react to changing
requirements at any point during the project (“polynesian
navigation”)

o XP prescribes a set of day-to-day practices for
managers and developers

* These are accepted normal practices, but taken to the extreme.
Hypothesis:

» Better way to elicit client requirements
« Better way to construct higher quality software.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 3

History of XP

e Original cast
« Kent Beck
« Ward Cunningham (also created Wiki)
* Ron Jeffries

e Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

e Lots of initial excitement but also resentment

e Daimler actually shut down the C3 Project in 2000 and
even banned XP for some time

« See Additional References

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 4

XP Day-to-Day Practices (“Mantras’)

 Rapid feedback

« Confronting issues early results in more time for
resolving issues. This applies both to client feedback
and feedback from testing

o Simplicity
e The design should focus on the current requirements

e Simple designs are easier to understand and change
than complex ones

 Incremental change

 One change at the time instead of many concurrent
changes

e One change at the time should be integrated with the
current baseline.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 5

XP Mantras (continued)

« Embracing change
 Change is inevitable and frequent in XP projects

e Change is normal and not an exception that needs to
be avoided

e Quality work

« Focus on rapid projects where progress is
demonstrated frequently

 Each change should be implemented carefully and
completely.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

e Planning is driven by requirements and their
relative priorities

Requirements are elicited by writing stories with the
client (called)

User stories are high-level scenarios or use cases that
encompass a set of coherent features

Developers decompose each user story in terms of
development tasks that are needed to realize the
features required by the story

Developers estimate the duration of each task in terms
of days

If a task is planned for more than a couple of weeks, it
is further decomposed into smaller tasks.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 7

Team Organization in XP

 Production code is written in pairs

e Individual developers may write prototypes for
experiments or proof of concepts, but not
production code

« Moreover, pairs are rotated often to enable a
better distribution of knowledge throughout the
project.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 8

How much planning in XP?

. Ideal weeks

Number of weeks estimated by a developer to
implement the story if all work time was dedicated for
this single purpose

- Fudge Factor

- Factor to reflect overhead activities (meetings,
holidays, sick days...)

. Also takes into account uncertainties associated with
planning

. Project velocity

. Inverse of ideal weeks

. i.e., how many ideal weeks can be accomplished in
fixed time.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 9

How much planning in XP?

Stacks

 The user stories are organized into stacks of related
functionality

Prioritization of stacks

« The client prioritizes the stacks so that essential
requirements can be addressed early and optional
requirements last

Release Plan

» Specifies which story will be implemented for which
release and when it will be deployed to the end user

Schedule

» Releases are scheduled frequently (e.g., every 1-2
months) to ensure rapid feedback from the end users.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 10

How much reuse in XP?

e Simple design

* Developers are encouraged to select the most simple
solution that addresses the user story being currently
implemented

 No design reusability

 The software architecture can be refined and
discovered one story at the time, as the prototype
evolves towards the complete system

 Focus on Refactoring

e Design patterns might be introduced as a result of
refactoring, when changes are actually implemented

« Reuse discovery only during implementation.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 11

How much modeling in XP?

No explicit analysis/design models
* Minimize the amount of documentation
 Fewer deliverables reduce the duplication of issues

Models are only communicated among
participants

 The client is the “walking specification”

Source Code is the only external model

e The system design is made visible in the source code
by using descriptive naming schemes

Refactoring is used to improve the source code

* Coding standards are used to help developers
communicate using only the source code.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 12

Scenario-Based Mog

- Carl enters An alysis,
the store .
-Hebuysacar | Scenario System Design
toy. Object Design
O—%
S are Model
Use Case = / Transformations
1
Model \ g B Dynamic Model

Object Model
System Model

Forward Engineering:
Source code is generated from
the system model (Ideal:,,0 %

Reverse Engineering:
The system model is

reconstructed from existing manual coding”, Component-
source code (legacy systems) Based Software Engmeermg)
class...
class...
class... Refactoring;:
Textual scenarios Source Cdde The source code is

transformed according to
refactoring rules (program
transformation)

generate external models

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 13

Models in XP (Story-Based)

class...
class...
class... Refactoring;
. Sourcd Code The source code is
Stories transformed according to
refactoring rules (program
generate source code transformetion)

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 14

How much process in XP?

o Iterative life cycle model with activities:
planning, design, coding, testing and integration

e Planning occurs at the beginning of each iteration
e Design, coding, and testing are done incrementally

e Source code is continuously integrated into the main
branch, one contribution at the time

« Unit tests for all integrated units; regression testing

e Constraints on these activities

« Test first. Unit tests are written before units. They are
written by the developer

« When defects are discovered, a unit test is created to
reproduce the defect

» Refactor before extending the source code.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 15

How much contirol?

e Reduced number of formal meetings
« Daily stand up meeting for status communication
e No discussions to keep the meeting short

 No inspections and no peer reviews
« Pair programming is used instead
e Production code is written in pairs, review during
coding.
e Self-organizing system with a leader:
 The Leader communicates the vision of the system
 The leader does not plan, schedule or budget

e The leader establishes an environment based on
collaboration, shared information, and mutual trust

 The leader ensures that a product is shipped.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 16

Summary of the XP Methodology

Planning

Collocate the project with the client,write user stories
with the client, frequent small releases (1-2 months),
create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling

Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
1dentification; Write code that adheres to standards;
Refactor whenever possible

Process

Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control

Code 1s owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007 17

Methodologies:
Extreme Programming
and Scrum

Software Engineering I
Lecture 19

Bernd Bruegge
Applied Software Engineering
Technische Universitaet Muenchen

Scrum

e What is Scrum?

e History of Scrum

e Agile Alliance

e Agile Project Management
 Functionality of Scrum

« Components of Scrum
« Scrum Roles
 The Process
o Scrum Artifacts

e Scaling Scrum
e Evolution of Scrum
e Conclusion

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

19

Introduction

e Classical software development methodologies
have several disadvantages:

e Huge effort during the planning phase

e Poor requirements conversion in a rapid changing
environment

 Treatment of staff as a factor of production

 Agile Software Development Methodologies

 Minimize risk - short iterations

« Real-time communication (preferable face-to-face) >
very little written documentation

e www.agilealliance.org

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 20

Scrum

e Definition (Rugby): A Scrum is a way to restart
the game after an interruption,

 The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

e Definition (Software Development): Scrum is an
agile, lightweight process

« To manage and control software and product
development with rapidly changing requirements

e Based on improved communication and maximizing
cooperation.

© 2006 Bernd Bruegge

Software Engineering WS 2006/2007 21

History of Scrum

e 1995:

« Jeff Sutherland and Ken Schwaber analyse common
software development processes

e Conclusion: not suitable for empirical,
unpredictable and non-repeatable processes

* Proposal of Scrum
« Enhancement of Scrum by Mike Beedle
e« Combination of Scrum with Extreme Programming

e 1996: Introduction of Scrum at OOPSLA

e« 2001: Publication “Agile Software Development
with Scrum” by Ken Schwaber & Mike Beedle

« Founders are also members in the Agile Alliance.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Manifesto for Agile Software Development

e http://www.agilemanifesto.org/

 Individuals and interactions over processes and
tools

« Working software over comprehensive
documentation

e Customer collaboration over contract negotiation
« Responding to change over following a plan.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 23

Methodology Issues

« Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

 Key questions for which methodologies provide
guidance:

How much involvement of the customer?
How much planning?

How much reuse?

How much modeling before coding?

How much process?

How much control and monitoring?

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 24

Scrum as Methodology

Involvement of the customer
 Onsite customer

Planning
e Checklists and incremental daily plans

Reuse
* Checklists from previous projects

Modeling
« Models may or may not be used

Process
» Iterative, incremental process

Control and Monitoring
e Daily meetings.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

25

Components of Scrum

e Scrum Roles
e Scrum Master, Scrum Team, Product Owner

 Process
e Sprint Planning Meeting
« Kickoff Meeting
e Sprint (~~ Iteration in a Unified Process)
e Daily Scrum Meeting
e Sprint Review Meeting

e Scrum Artifacts
e Product Backlog, Sprint Backlog
e Burndown Charts

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

26

Overview of Scrum

DAILY SCRUM
MEETING

24 HOURS

POTENTIALLY
SHIPPABLE
PrRODUCT
INCREMENT

SPRINT
BACKLOG

PRODUCT
BACkLOG

copyriIGHT © 2005, MOUNTAIN BOAT SOFTWARE

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 E 27

Scrum Master

Represents management to the project

Typically filled by a project manager or team
leader

Responsible for enacting scrum values and
practices

Main job is to remove impediments.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 28

The Scrum Team

Typically 5-6 people

Cross-functional (QA, Programmers, UI
Designers, etc.)

Members should be full-time
Team is self-organizing
Membership can change only between sprints

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

29

Product Owner

« Knows what needs to be build and in
what sequence this should be done

o Typically a product manager

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

30

Scrum Process Activities

e Project-Kickoff Meeting
Sprint Planning Meeting
Sprint

Daily Scrum Meeting
Sprint Review Meeting

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

31

Project-Kickoff Meeting

* A collaborative meeting in the beginning of the
project
» Participants: Product Owner, Scrum Master

 Takes 8 hours and consists of 2 parts (“before lunch
and after lunch”)

 Goal: Create the Product Backlog

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 32

Sprint Planning Meeting

* A collaborative meeting in the beginning of each
Sprint

« Participants: Product Owner, Scrum Master and Scrum
Team

« Takes 8 hours and consists of 2 parts (“before
lunch and after lunch”)

 Goal: Create the Sprint Backlog

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 33

Sprint

« A month-long iteration, during which is
incremented a product functionality

e No outside influence can interference with the
Scrum team during the Sprint

« Each day in a Sprint begins with the Daily Scrum
Meeting

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 34

Daily Scrum Meeting

e Is a short (15 minutes long) meeting, which is
held every day before the Team starts working

e Participants:
 Scrum Master (which is the chairman), Scrum Team

e Every Team member should answer on 3
questions

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 35

Questions for each Scrum Team Membaer

What did I do since the last Scrum meeting?

2.
What is stopping me getting on with the work?

3.

What am I doing until the next Scrum meeting?

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 36

Summary

XP and Scrum are agile software development
methodologies with focus on

 Empirical process control model
 Changing requirements are the norm
e Controlling conflicting interests and needs

Very simple processes with clearly defined rules

Self-organizing teams, where each team
member carries a lot of responsibility

No extensive documentation
« Possibility for “undisciplined hacking”.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 37

Additional References

« Seminar SS 2007: Agile Techniques in Software Development

http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/Agil
ePMS0Se2007

e Books

Kent Beck, Extreme Programming Explained: Embrace Change

Kent Beck and Martin Fowler, Planning Extreme Programming

Martin Fowler Refactoring: Improving the Design of Existing Code

Ken Auer and Roy Miller, Extreme Programming Applied: Playing To Win
Ron Jeffries, A. Anderson, C.Hendrickson Extreme Programming Installed
Jim Smith, Agile Project Management

Mary & Tom Poppendieck, Lean Software Development: An Agile Toolkit
Mike Cohn, Agile estimating and planning

Craig Larman, Agile & iterative development: A manager's guide

Jim Highsmith, Agile Software Development Ecosystems

Mike Cohn, User stories applied for agile software development.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 38

Thank you very much!

See you again in the Summer

EinflUhrung in die Softwaretechnik I
Agile Modeling with Design Patterns

Knowledge Management in Software
Engineering

Offshore Software Testing
Product Line Requirements Engineering
Agile Project Management

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 E

39

For up to date information about lectures and
seminars offered by the chair look at

http://wwwbruegge.in.tum.de/Lehrstuhl/Teaching
S05e2007

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 40

Backup and Additional Slides

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Lists, Activities and Meetings in Scrum

Create Project
Backlog

Project
Backlog

Sprint
Backlog

Create Sprint
Backlog

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 E 42

Scrum Artifacts

 Product Backlog
e Sprint Backlog
e Burn down Charts

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

43

Product Backlog

« Requirements for a system, expressed as a

« Managed and owned by a Product Owner
« Contained in a spreadsheet (typically)

e Usually created during the Project Kickoff
Meeting

« Can be changed and re-prioritized before each
Sprint.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

44

Sprint Backlog

A subset of Product Backlog Items, which
defines the work to be done in a Sprint

o Is created ONLY by Team members
 Each item has it's own status
 Should be updated every day

e No more then 300 tasks in the list

o If a task requires more than 16 hours, it should
be broken down

e Team can add or subtract items from the list
 Product owner is not allowed to do it.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 45

Daily Scrum Meeting

 Not a problem solving session

e Also not a way to collect information about who
is behind the schedule

e It is @ meeting in which team members make
commitments to each other and to the Scrum
Master

e Is a good way for a Scrum Master to track the
progress of the team.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 46

Sprint Review Meeting

 Is held at the end of each Sprint

e Business functionality which was created during
the Sprint is demonstrated to the Product Owner

 Informal, should not distract Team members of
doing their work

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 47

Measuring Progress in Scrum

* Project Manager is mostly concerned about

e Sprint progress: How is the team doing toward meeting their
Sprint goal

* Release progress: Will the release be on time with the quality
and functionality desired?

e Product progress: how is the product filling out compared to
what's needed?

« 3 Types of Charts (good information radiators)
e Sprint Burn down Chart (progress of the sprint)
* Release Burn down Chart (progress of release)
* Product Burn down chart (progress of the product)

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 48

Estimation of Product Backlog ltems

o Establishes team’s velocity (how much effort a
Team can handle in one Sprint)
e Units of complexity
o Size-category: L, M, S ("T-Shirt size”)
e Story points
« Work days/work hours
« Methods of estimation:
 Expert Review
* Creating a Work Breakdown Structure (WBS)

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 49

Burn down Charts
o X-AXxis: time (usually in days)
e Y-AXis: remaining effort

Estimated Hours Remaining by Date

- 10p

Hours
Remaining

- 10

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Burn down Charts are good Information
Radiators

« Two characteristics are key for a good
information radiator

 The information changes over time

 This makes it worth a person's while to look at the
display...

« It takes very little energy to view the display."

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 51

Sprint Burn down Chart

e Depicts the total Sprint Backlog hours remaining
per day

e Shows the estimated amount of time to release

e Ideally should burn down to zero to the end of
the Sprint

o Actually is not a straight line
« Can bump UP

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 52

Release Burn down Chart

 Will the release be done on right time?

e X-axis: sprints

e Y-axis: amount of hours remaining

« The estimated work remaining can also burn up

© 2006 Bernd Bruegge Software Engineering WS 2006/2007 53

Alternative Release Burn down Chart

e Consists of bars (one for each sprint)
* Values on the Y-axis: positive AND negative
e Is more informative then a simple chart

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

54

Product Burn down Chart

« The "“big picture” view of project’s progress
 Burn down Chart containing all the releases.

© 2006 Bernd Bruegge Software Engineering WS 2006/2007

55

