
1© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Methodologies:
Extreme Programming

and Scrum

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 19

2© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Outline of the Lecture

• Examples of Methodologies
• Extreme Programming
• Scrum
• Royce’s Methodology (slide set L20 posted on SE

portal)
• Combines the unified process with hierarchical

project management.

3© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP

• Extreme Programming is an example of an agile
software methodology

• Higher priority on adaptability (“empirical process control
model”) than on predictability (“defined process control model”)

• Change, in particular in the requirements, is normal during
software development

• Software developer must be able react to changing
requirements at any point during the project (“polynesian
navigation”)

• XP prescribes a set of day-to-day practices for
managers and developers

• These are accepted normal practices, but taken to the extreme.
Hypothesis:

• Better way to elicit client requirements
• Better way to construct higher quality software.

4© 2006 Bernd Bruegge Software Engineering WS 2006/2007

History of XP

• Original cast
• Kent Beck
• Ward Cunningham (also created Wiki)
• Ron Jeffries

• Application of XP in the Chrysler Comprehensive
Compensation project (C3 Project) in 1995

• Lots of initial excitement but also resentment
• Daimler actually shut down the C3 Project in 2000 and

even banned XP for some time
• See Additional References

5© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP Day-to-Day Practices (“Mantras”)

• Rapid feedback
• Confronting issues early results in more time for

resolving issues. This applies both to client feedback
and feedback from testing

• Simplicity
• The design should focus on the current requirements
• Simple designs are easier to understand and change

than complex ones

• Incremental change
• One change at the time instead of many concurrent

changes
• One change at the time should be integrated with the

current baseline.

6© 2006 Bernd Bruegge Software Engineering WS 2006/2007

XP Mantras (continued)

• Embracing change
• Change is inevitable and frequent in XP projects
• Change is normal and not an exception that needs to

be avoided

• Quality work
• Focus on rapid projects where progress is

demonstrated frequently
• Each change should be implemented carefully and

completely.

7© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Planning is driven by requirements and their
relative priorities

• Requirements are elicited by writing stories with the
client (called user stories)

• User stories are high-level scenarios or use cases that
encompass a set of coherent features

• Developers decompose each user story in terms of
development tasks that are needed to realize the
features required by the story

• Developers estimate the duration of each task in terms
of days

• If a task is planned for more than a couple of weeks, it
is further decomposed into smaller tasks.

8© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Team Organization in XP

• Production code is written in pairs (pair
programming)

• Individual developers may write prototypes for
experiments or proof of concepts, but not
production code

• Moreover, pairs are rotated often to enable a
better distribution of knowledge throughout the
project.

9© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Ideal weeks
• Number of weeks estimated by a developer to

implement the story if all work time was dedicated for
this single purpose

• Fudge Factor
• Factor to reflect overhead activities (meetings,

holidays, sick days...)
• Also takes into account uncertainties associated with

planning

• Project velocity
• Inverse of ideal weeks

• i.e., how many ideal weeks can be accomplished in
fixed time.

10© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much planning in XP?

• Stacks
• The user stories are organized into stacks of related

functionality

• Prioritization of stacks
• The client prioritizes the stacks so that essential

requirements can be addressed early and optional
requirements last

• Release Plan
• Specifies which story will be implemented for which

release and when it will be deployed to the end user

• Schedule
• Releases are scheduled frequently (e.g., every 1–2

months) to ensure rapid feedback from the end users.

11© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much reuse in XP?

• Simple design
• Developers are encouraged to select the most simple

solution that addresses the user story being currently
implemented

• No design reusability
• The software architecture can be refined and

discovered one story at the time, as the prototype
evolves towards the complete system

• Focus on Refactoring
• Design patterns might be introduced as a result of

refactoring, when changes are actually implemented
• Reuse discovery only during implementation.

12© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much modeling in XP?

• No explicit analysis/design models
• Minimize the amount of documentation
• Fewer deliverables reduce the duplication of issues

• Models are only communicated among
participants

• The client is the “walking specification”

• Source Code is the only external model
• The system design is made visible in the source code

by using descriptive naming schemes

• Refactoring is used to improve the source code
• Coding standards are used to help developers

communicate using only the source code.

13© 2006 Bernd Bruegge Software Engineering WS 2006/2007

System Model

Scenario-Based Modeling in OOSE

Forward Engineering:
Source code is generated from
the system model (Ideal: „0 %
manual coding“, Component-
Based Software Engineering)

Reverse Engineering:
The system model is
reconstructed from existing
source code (legacy systems)

Use Case
Model

Source Code

class...
class...
class... Refactoring:

The source code is
transformed according to
refactoring rules (program
transformation)

Object Model

Dynamic Model

Analysis,
System Design
Object Design

are Model
Transformations

Scenario
- Carl enters
the store
- He buys a car
toy.
....

Textual scenarios
generate external models

14© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Models in XP (Story-Based)

Source Code

class...
class...
class... Refactoring:

The source code is
transformed according to
refactoring rules (program
transformation)

Stories

Stories
generate source code

15© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much process in XP?

• Iterative life cycle model with activities:
planning, design, coding, testing and integration

• Planning occurs at the beginning of each iteration
• Design, coding, and testing are done incrementally
• Source code is continuously integrated into the main

branch, one contribution at the time
• Unit tests for all integrated units; regression testing

• Constraints on these activities
• Test first. Unit tests are written before units. They are

written by the developer
• When defects are discovered, a unit test is created to

reproduce the defect
• Refactor before extending the source code.

16© 2006 Bernd Bruegge Software Engineering WS 2006/2007

How much control?

• Reduced number of formal meetings
• Daily stand up meeting for status communication
• No discussions to keep the meeting short

• No inspections and no peer reviews
• Pair programming is used instead
• Production code is written in pairs, review during

coding.

• Self-organizing system with a leader:
• The Leader communicates the vision of the system
• The leader does not plan, schedule or budget
• The leader establishes an environment based on

collaboration, shared information, and mutual trust
• The leader ensures that a product is shipped.

17© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary of the XP Methodology
Planning Collocate the project with the client,write user stories

with the client, frequent small releases (1-2 months),
create schedule with release planning, kick off an
iteration with iteration planning, create programmer
pairs, allow rotation of pairs

Modeling Select the simplest design that addresses the current
story; Use a system metaphor to model difficult
concepts; Use CRC cards for the initial object
identification; Write code that adheres to standards;
Refactor whenever possible

Process Code unit test first, do not release before all unit tests
pass, write a unit test for each uncovered bug, integrate
one pair at the time

Control Code is owned collectively. Adjust schedule, Rotate
pairs, Daily status stand-up meeting, Run acceptance
tests often and publish the results.

18© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Methodologies:
Extreme Programming

and Scrum

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 19

19© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum

• What is Scrum?
• History of Scrum
• Agile Alliance
• Agile Project Management
• Functionality of Scrum
• Components of Scrum

• Scrum Roles
• The Process
• Scrum Artifacts

• Scaling Scrum
• Evolution of Scrum
• Conclusion

20© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Introduction

• Classical software development methodologies
have several disadvantages:

• Huge effort during the planning phase
• Poor requirements conversion in a rapid changing

environment
• Treatment of staff as a factor of production

• Agile Software Development Methodologies
• Minimize risk short iterations
• Real-time communication (preferable face-to-face)

very little written documentation
• www.agilealliance.org

21© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum
• Definition (Rugby): A Scrum is a way to restart

the game after an interruption,
• The forwards of each side come together in a tight

formation and struggle to gain possession of the
ball when it is tossed in among them

• Definition (Software Development): Scrum is an
agile, lightweight process

• To manage and control software and product
development with rapidly changing requirements

• Based on improved communication and maximizing
cooperation.

22© 2006 Bernd Bruegge Software Engineering WS 2006/2007

History of Scrum

• 1995:
• Jeff Sutherland and Ken Schwaber analyse common

software development processes
• Conclusion: not suitable for empirical,

unpredictable and non-repeatable processes
• Proposal of Scrum
• Enhancement of Scrum by Mike Beedle

• Combination of Scrum with Extreme Programming

• 1996: Introduction of Scrum at OOPSLA
• 2001: Publication “Agile Software Development

with Scrum” by Ken Schwaber & Mike Beedle
• Founders are also members in the Agile Alliance.

23© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Manifesto for Agile Software Development

• http://www.agilemanifesto.org/
• Individuals and interactions over processes and

tools
• Working software over comprehensive

documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan.

24© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Methodology Issues

• Methodologies provide guidance, general
principles and strategies for selecting methods
and tools in a given project environment

• Key questions for which methodologies provide
guidance:

• How much involvement of the customer?
• How much planning?
• How much reuse?
• How much modeling before coding?
• How much process?
• How much control and monitoring?

25© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum as Methodology

• Involvement of the customer
• Onsite customer

• Planning
• Checklists and incremental daily plans

• Reuse
• Checklists from previous projects

• Modeling
• Models may or may not be used

• Process
• Iterative, incremental process

• Control and Monitoring
• Daily meetings.

26© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Components of Scrum

• Scrum Roles
• Scrum Master, Scrum Team, Product Owner

• Process
• Sprint Planning Meeting
• Kickoff Meeting
• Sprint (~~ Iteration in a Unified Process)
• Daily Scrum Meeting
• Sprint Review Meeting

• Scrum Artifacts
• Product Backlog, Sprint Backlog
• Burndown Charts

27© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Overview of Scrum

28© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum Master

• Represents management to the project
• Typically filled by a project manager or team

leader
• Responsible for enacting scrum values and

practices
• Main job is to remove impediments.

29© 2006 Bernd Bruegge Software Engineering WS 2006/2007

The Scrum Team

• Typically 5-6 people
• Cross-functional (QA, Programmers, UI

Designers, etc.)
• Members should be full-time
• Team is self-organizing
• Membership can change only between sprints

30© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Product Owner

• Knows what needs to be build and in
what sequence this should be done

• Typically a product manager

31© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum Process Activities

• Project-Kickoff Meeting
• Sprint Planning Meeting
• Sprint
• Daily Scrum Meeting
• Sprint Review Meeting

32© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Project-Kickoff Meeting

• A collaborative meeting in the beginning of the
project

• Participants: Product Owner, Scrum Master
• Takes 8 hours and consists of 2 parts (“before lunch

and after lunch”)

• Goal: Create the Product Backlog

33© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint Planning Meeting

• A collaborative meeting in the beginning of each
Sprint

• Participants: Product Owner, Scrum Master and Scrum
Team

• Takes 8 hours and consists of 2 parts (“before
lunch and after lunch”)

• Goal: Create the Sprint Backlog

34© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint

• A month-long iteration, during which is
incremented a product functionality

• No outside influence can interference with the
Scrum team during the Sprint

• Each day in a Sprint begins with the Daily Scrum
Meeting

35© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Daily Scrum Meeting

• Is a short (15 minutes long) meeting, which is
held every day before the Team starts working

• Participants:
• Scrum Master (which is the chairman), Scrum Team

• Every Team member should answer on 3
questions

36© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Questions for each Scrum Team Member

1. Status:
What did I do since the last Scrum meeting?

2. Issues:
What is stopping me getting on with the work?

3. Action items:
What am I doing until the next Scrum meeting?

37© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Summary

• XP and Scrum are agile software development
methodologies with focus on

• Empirical process control model
• Changing requirements are the norm
• Controlling conflicting interests and needs

• Very simple processes with clearly defined rules
• Self-organizing teams, where each team

member carries a lot of responsibility
• No extensive documentation

• Possibility for “undisciplined hacking”.

38© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Additional References
• Seminar SS 2007: Agile Techniques in Software Development

• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/Agil
ePMSoSe2007

• Books
• Kent Beck, Extreme Programming Explained: Embrace Change
• Kent Beck and Martin Fowler, Planning Extreme Programming
• Martin Fowler Refactoring: Improving the Design of Existing Code
• Ken Auer and Roy Miller, Extreme Programming Applied: Playing To Win
• Ron Jeffries, A. Anderson, C.Hendrickson Extreme Programming Installed
• Jim Smith, Agile Project Management
• Mary & Tom Poppendieck, Lean Software Development: An Agile Toolkit
• Mike Cohn, Agile estimating and planning
• Craig Larman, Agile & iterative development: A manager's guide
• Jim Highsmith, Agile Software Development Ecosystems
• Mike Cohn, User stories applied for agile software development.

39© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Thank you very much!

See you again in the Summer

Einführung in die Softwaretechnik I
Agile Modeling with Design Patterns
Knowledge Management in Software

Engineering
Offshore Software Testing

Product Line Requirements Engineering
Agile Project Management

40© 2006 Bernd Bruegge Software Engineering WS 2006/2007

For up to date information about lectures and
seminars offered by the chair look at

http://wwwbruegge.in.tum.de/Lehrstuhl/Teaching
SoSe2007

41© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Backup and Additional Slides

42© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Create Project
Backlog

Create Sprint
Backlog

Sprint
Backlog

Sprint
Planning
 Meeting

Daily
 Scrum
Meeting

Sprint
 Review
Meeting

Project
Backlog

Kickoff
Meeting

Lists, Activities and Meetings in Scrum

43© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Scrum Artifacts

• Product Backlog
• Sprint Backlog
• Burn down Charts

44© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Product Backlog

• Requirements for a system, expressed as a
prioritized list of todo Items

• Managed and owned by a Product Owner
• Contained in a spreadsheet (typically)

• Usually created during the Project Kickoff
Meeting

• Can be changed and re-prioritized before each
Sprint.

45© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint Backlog

• A subset of Product Backlog Items, which
defines the work to be done in a Sprint

• Is created ONLY by Team members
• Each item has it’s own status
• Should be updated every day

• No more then 300 tasks in the list
• If a task requires more than 16 hours, it should

be broken down
• Team can add or subtract items from the list

• Product owner is not allowed to do it.

46© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Daily Scrum Meeting

• Not a problem solving session
• Also not a way to collect information about who

is behind the schedule

• It is a meeting in which team members make
commitments to each other and to the Scrum
Master

• Is a good way for a Scrum Master to track the
progress of the team.

47© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint Review Meeting

• Is held at the end of each Sprint
• Business functionality which was created during

the Sprint is demonstrated to the Product Owner
• Informal, should not distract Team members of

doing their work

48© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Measuring Progress in Scrum

• Project Manager is mostly concerned about
• Sprint progress: How is the team doing toward meeting their

Sprint goal
• Release progress: Will the release be on time with the quality

and functionality desired?
• Product progress: how is the product filling out compared to

what's needed?

• 3 Types of Charts (good information radiators)
• Sprint Burn down Chart (progress of the sprint)
• Release Burn down Chart (progress of release)
• Product Burn down chart (progress of the product)

49© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Estimation of Product Backlog Items

• Establishes team’s velocity (how much effort a
Team can handle in one Sprint)

• Units of complexity
• Size-category: L, M, S (“T-Shirt size”)
• Story points
• Work days/work hours

• Methods of estimation:
• Expert Review
• Creating a Work Breakdown Structure (WBS)

50© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Burn down Charts
• X-Axis: time (usually in days)
• Y-Axis: remaining effort

51© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Burn down Charts are good Information
Radiators

• Two characteristics are key for a good
information radiator

• The information changes over time
• This makes it worth a person's while to look at the

display...
• It takes very little energy to view the display."

52© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Sprint Burn down Chart

• Depicts the total Sprint Backlog hours remaining
per day

• Shows the estimated amount of time to release
• Ideally should burn down to zero to the end of

the Sprint
• Actually is not a straight line
• Can bump UP

53© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Release Burn down Chart

• Will the release be done on right time?
• X-axis: sprints
• Y-axis: amount of hours remaining
• The estimated work remaining can also burn up

54© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Alternative Release Burn down Chart

• Consists of bars (one for each sprint)
• Values on the Y-axis: positive AND negative
• Is more informative then a simple chart

55© 2006 Bernd Bruegge Software Engineering WS 2006/2007

Product Burn down Chart

• The “big picture” view of project’s progress
• Burn down Chart containing all the releases.

